成人欧美一区二区三区,天天干天天操天天爱,免费特黄一级欧美大片在线看 ,亚洲中文字幕无码一区日日添

    <span id="alen4"></span>

    <li id="alen4"></li>

      Reactive Oxygen Species Assay Kit 活性氧(ROS)檢測試劑盒

      更多活動更多優(yōu)惠,盡在翌圣商城》

      批量采購, 請點擊詢價

      產(chǎn)品說明書

      FAQ

      COA

      已發(fā)表文獻(xiàn)

      檢測原理

      活性氧檢測試劑盒(Reactive Oxygen Species Assay Kit)是一種基于熒光染料DCFH-DA (2,7-Dichlorodi -hydrofluorescein diacetate)的熒光強度變化,定量檢測細(xì)胞內(nèi)活性氧水平的最常用方法。

      DCFH-DA本身沒有熒光,可以自由穿過細(xì)胞膜。進(jìn)入細(xì)胞內(nèi)后,可以被細(xì)胞內(nèi)的酯酶水解生成DCFH,而DCFH不會通透細(xì)胞膜,因此探針很容易被積聚在細(xì)胞內(nèi)。細(xì)胞內(nèi)的活性氧能夠氧化無熒光的DCFH生成有熒光的DCF。綠色熒光強度與活性氧的水平成正比。在最大激發(fā)波長480 nm,最大發(fā)射波長525 nm處,使用熒光顯微鏡、流式細(xì)胞儀或激光共聚焦顯微鏡等檢測熒光信號。Rosup為活性氧陽性誘導(dǎo)藥物,根據(jù)其熒光信號強度,可分析活性氧的真正水平。

      96孔板每孔加樣量為標(biāo)準(zhǔn),本試劑盒可測定約1000次。

       

      產(chǎn)品組分

      編號

      組分

      規(guī)格

      保存方法

      50101-A

      DCFH-DA (10 mM)

      0.1 mL

      -20℃

      50101-B

      活性氧陽性對照(Rosup, 100 mM)

      1.0 mL

      -20℃

       

      運輸與保存

      冰袋運輸。-20℃干燥保存,避免強光直射。有效期一年。

       

      操作過程

      1.裝載探針

      1.1原位裝載探針(僅適用于貼壁細(xì)胞)

      1)細(xì)胞準(zhǔn)備:檢測前一天進(jìn)行細(xì)胞鋪板,確保檢測時細(xì)胞匯合度達(dá)到50~70%

      】:必須保證細(xì)胞狀態(tài)健康,且檢測時不會過度生長。
      2藥物誘導(dǎo):去除細(xì)胞培養(yǎng)液,加入適量經(jīng)合適的緩沖液或無血清培養(yǎng)基稀釋到工作濃度的藥物,于37℃細(xì)胞培養(yǎng)箱內(nèi)避光孵育,具體誘導(dǎo)時間根據(jù)藥物本身特性,以及細(xì)胞類型來決定。

      (可選)陽性對照:先用無血清培養(yǎng)基等稀釋陽性對照(Rosup, 100 mM)到常用工作濃度100 μM,加入細(xì)胞,一般37℃避光孵育30 min-4 h可顯著看到活性氧水平提高,但依細(xì)胞類型會有比較明顯差異?!救?/span>HeLa細(xì)胞孵育30 min;MRC5人胚胎成纖維細(xì)胞1.5 h

      3探針準(zhǔn)備:探針裝載前按照1:1000用無血清培養(yǎng)液稀釋DCFH-DA,使其終濃度為10 μM。
      4探針裝載:吸除誘導(dǎo)用藥物,加入適當(dāng)體積稀釋好的DCFH-DA工作液。加入的體積以能充分蓋住細(xì)胞為宜。例如對于6孔板通常不少于1000 μL,對于96孔板通常不少于100 μL37℃細(xì)胞培養(yǎng)箱內(nèi)避光孵育30 min,孵育時間長短與細(xì)胞類型、刺激條件以及DCFH-DA濃度有關(guān),根據(jù)實驗情況自行摸索。

      5細(xì)胞清洗:用無血清培養(yǎng)液洗滌細(xì)胞1~2次,以充分去除未進(jìn)入細(xì)胞內(nèi)的DCFH-DA

      1.2 收集細(xì)胞后裝載探針:適用于貼壁細(xì)胞和懸浮細(xì)胞。

      1細(xì)胞準(zhǔn)備:按照標(biāo)準(zhǔn)方法培養(yǎng)細(xì)胞,必須保證檢測用細(xì)胞狀態(tài)健康。按照適當(dāng)方法,清洗并收集足量的細(xì)胞。
      2藥物誘導(dǎo):將收集好的細(xì)胞懸浮于適量稀釋好的藥物,于37℃細(xì)胞培養(yǎng)箱內(nèi)避光孵育,具體誘導(dǎo)時間根據(jù)藥物本身特性,以及細(xì)胞類型來決定。

      (可選)陽性對照:先用無血清培養(yǎng)基等稀釋陽性對照(Rosup, 100 mM)到常用工作濃度100 μM,加入細(xì)胞,一般37℃避光孵育30 min-4 h可顯著看到活性氧水平提高,但依細(xì)胞類型會有比較明顯差異?!救?/span>HeLa細(xì)胞孵育30 min;MRC5人胚胎成纖維細(xì)胞1.5 h

      3探針準(zhǔn)備:探針裝載前,按照1:1000用無血清培養(yǎng)液稀釋DCFH-DA,使其終濃度為10 μM。
      4探針裝載:去除細(xì)胞內(nèi)藥物,離心收集細(xì)胞,加入適當(dāng)稀釋好的探針,使其細(xì)胞密度為1.0×106~2.0×107?!?/span>】:細(xì)胞密度需根據(jù)后續(xù)的檢測體系,檢測方法,以及檢測總量來進(jìn)行調(diào)整。如對于流式分析,單管檢測內(nèi)細(xì)胞數(shù)目不少于104,也不可多于106。37℃細(xì)胞培養(yǎng)箱內(nèi)孵育20-60 min,每隔3-5 min顛倒混勻一下,使探針和細(xì)胞充分接觸。孵育時間長短與細(xì)胞類型、刺激條件以及DCFH-DA濃度有關(guān),根據(jù)實驗情況自行摸索。

      5細(xì)胞清洗:用無血清細(xì)胞培養(yǎng)液洗滌細(xì)胞1~2次,以充分去除未進(jìn)入細(xì)胞內(nèi)的DCFH-DA。

       

      2.檢測

      原位裝載探針法:激光共聚焦顯微鏡直接觀察,或收集細(xì)胞后用熒光分光光度計、熒光酶標(biāo)儀或流式細(xì)胞儀檢測。

      收集細(xì)胞后裝載探針:用熒光分光光度計、熒光酶標(biāo)儀或流式細(xì)胞儀檢測,也可以用激光共聚焦顯微鏡直接觀察。

       

      3.參數(shù)設(shè)置

      使用488 nm激發(fā)波長,525 nm發(fā)射波長,實時或逐時間點檢測刺激前后熒光的強弱。DCF的熒光光譜和FITC非常相似,可以用FITC的參數(shù)設(shè)置檢測DCF。DCF的激發(fā)光譜和發(fā)射光譜參考下圖。

      image.png 

       

      其他事項說明
      1對于刺激時間較短(通常2 h以內(nèi))的細(xì)胞,也可先裝載探針,后用活性氧陽性對照和/或感興趣藥物刺激細(xì)胞,如陽性對照刺激,應(yīng)先加入適量探針于37℃避光孵育30 min;然后再加入等體積陽性對照Rosup溶液(200 μM),37℃避光誘導(dǎo)30 min-4 h;
      2)陽性對照Rosup通常濃度為100 μM。通常刺激后30 min-4 h可以觀察到顯著的活性氧水平升高。對于不同的細(xì)胞,活性氧陽性對照的效果可能有較大的差別。如果在刺激后30 min內(nèi)觀察不到活性氧的升高,可延長誘導(dǎo)時間或適當(dāng)提高活性氧陽性對照的濃度。如果活性氧升高得過快,可縮短誘導(dǎo)時間或適當(dāng)降低活性氧陽性對照的濃度。
      3)對于某些細(xì)胞,如果發(fā)現(xiàn)沒有刺激的陰性對照細(xì)胞熒光也比較強,可以按照1: 20001: 5000稀釋DCFH-DA,使裝載探針時DCFH-DA的濃度為25 μM。探針裝載的時間也可以根據(jù)情況在1560 min內(nèi)適當(dāng)進(jìn)行調(diào)整。

      4)活性氧陽性對照(Rosup)僅僅用于作為陽性對照的樣品,并不是在每個樣品中都需加入活性氧陽性對照。

       

      注意事項

      1)探針裝載后,一定要洗凈殘余的未進(jìn)入細(xì)胞內(nèi)的探針,否則會導(dǎo)致背景較高。

      2)探針裝載完畢并洗凈殘余探針后,可以進(jìn)行激發(fā)波長的掃描和發(fā)射波長的掃描,以確認(rèn)探針的裝載情況是否良好。

      3)盡量縮短探針裝載后到測定所用的時間(刺激時間除外),以減少各種可能的誤差。

      4)為了您的安全和健康,請穿實驗服并戴一次性手套操作。

      5本產(chǎn)品僅作科研用途!

       

      客戶使用本產(chǎn)品發(fā)表的科研文獻(xiàn)(部分)

      [1] Zhong D, Jin K, Wang R, Chen B, Zhang J, Ren C, Chen X, Lu J, Zhou M. Microalgae-Based Hydrogel for Inflammatory Bowel Disease and Its Associated Anxiety and Depression. Adv Mater. 2024 Jan 26: e2312275. doi: 10.1002/adma.202312275. Epub ahead of print. PMID: 38277492.   IF: 29.4

      [2] Zhang M, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication. Adv Sci (Weinh). 2022 Aug;9(22): e2201135. doi: 10.1002/advs.202201135. Epub 2022 Jun 4.  IF: 16.806

      [3] Zhang D, et al. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat Commun. 2022 Mar 17;13(1):1413. doi: 10.1038/s41467-022-28744-4. PMID: 35301299.  IF: 14.919

      [4] Jiao D, et al. Biocompatible reduced graphene oxide stimulated BMSCs induce acceleration of bone remodeling and orthodontic tooth movement through promotion on osteoclastogenesis and angiogenesis. Bioact Mater. 2022 Feb 6; 15:409-425. doi: 10.1016/j.bioactmat.2022.01.021. PMID: 35386350; PMCID: PMC8958387.    IF: 14.593
      [5] Guo G, et al. Space-Selective Chemodynamic Therapy of CuFe5O8 Nanocubes for Implant-Related Infections. ACS Nano. 2020 Oct 27;14(10):13391-13405. doi: 10.1021/acsnano.0c05255. Epub 2020 Sep 22. PMID: 32931252.   IF: 14.588

      [6] Yang C, et al. Red Phosphorus Decorated TiO2 Nanorod Mediated Photodynamic and Photothermal Therapy for Renal Cell Carcinoma. Small. 2021 Jul;17(30): e2101837. doi: 10.1002/smll.202101837. Epub 2021 Jun 19. PMID: 34145768.   IF13.281

      [7] Xiaolu Chen, et al. Metal-phenolic networks-encapsulated cascade amplification delivery nanoparticles overcoming cancer drug resistance via combined starvation/chemodynamic/chemo therapy. Chemical Engineering Journal. 2022 Aug; 442:136221.    IF: 13.273

      [8] Hao Ding, et al. Mesenchymal stem cells encapsulated in a reactive oxygen species-scavenging and O2-generating injectable hydrogel for myocardial infarction treatment. Chemical Engineering Journal. 2022.133511:1385-8947.  IF: 13.273

      [9] Yu H, et al. Triple cascade nanocatalyst with laser-activatable O2 supply and photothermal enhancement for effective catalytic therapy against hypoxic tumor. Biomaterials. 2022 Jan; 280:121308. PMID: 34896860.   IF: 12.479

      [10] Sun D, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 2022 Jan;12(1):378-393. PMID: 35127393.    IF: 11.614

      [11] Xiong Y, et al. Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Theranostics. 2022 Jan 1;12(2):944-962. PMID: 34976222. IF: 11.556

      [12] Gao J, et al. Mitochondrion-targeted supramolecular "nano-boat" simultaneously inhibiting dual energy metabolism for tumor selective and synergistic chemo-radiotherapy. Theranostics. 2022 Jan 1;12(3):1286-1302. PMID: 35154487.    IF: 11.556

      [13] Zhong D, et al. Calcium phosphate engineered photosynthetic microalgae to combat hypoxic-tumor by in-situ modulating hypoxia and cascade radio-phototherapy. Theranostics. 2021 Jan 22;11(8):3580-3594. PMID: 33664849.  IF: 11.556

      [14] Sun J, et al. Cytotoxicity of stabilized/solidified municipal solid waste incineration fly ash. J Hazard Mater. 2022 Feb 15;424(Pt A):127369. doi: 10.1016/j.jhazmat.2021.127369. Epub 2021 Sep 29. PMID: 34879564.   IF: 10.588

      [15] Zhu C, et al. Multifunctional thermo-sensitive hydrogel for modulating the microenvironment in Osteoarthritis by polarizing macrophages and scavenging RONS. J Nanobiotechnology. 2022 May 7;20(1):221.  IF: 10.435

      [16] Pan X, et al. Zinc oxide nanosphere for hydrogen sulfide scavenging and ferroptosis of colorectal cancer. J Nanobiotechnology. 2021 Nov 27;19(1):392. doi: 10.1186/s12951-021-01069-y. PMID: 34838036; PMCID: PMC8626909.    IF: 10.435

      [17] He J, et al. Gold-silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomaterials. 2020 Mar; 234:119763. PMID: 31978871.    IF: 10.317

      [18] Cheng Q, et al. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials. 2019 Dec; 224:119500. doi: 10.1016/j.biomaterials.2019.119500. Epub 2019 Sep 17. PMID: 31557591.   IF: 10.273

      [19] Zhong D, et al. Laser-triggered aggregated cubic α-Fe2O3@Au nanocomposites for magnetic resonance imaging and photothermal/enhanced radiation synergistic therapy. Biomaterials. 2019 Oct; 219:119369. PMID: 31351244.    IF: 10.273

      [20] Sun C, et al. Selenoxide elimination manipulate the oxidative stress to improve the antitumor efficacy. Biomaterials. 2019 Dec; 225:119514. doi: 10.1016/j.biomaterials.2019.119514. Epub 2019 Sep 24. PMID: 31569018.     IF: 10.273

       

      相關(guān)產(chǎn)品

      名稱

      產(chǎn)品貨號

      規(guī)格

      Dihydroethidium (DHE) 二氫乙錠(超氧化物陰離子熒光探針)

      50102ES02

      5 mg

      50102ES25

      25 mg

      CellROX Orange Reagent, for Live Cell Oxidative Stress Detection 氧化應(yīng)激檢測橙色探針(活細(xì)胞)

      50103ES50

      1×50 μL

      Total Superoxide Dismutase Activity Colorimetric Assay Kit ISOD活力檢測試劑盒 I(比色法)Hot

      50104ES60

      100 T

      Total Superoxide Dismutase Activity Colorimetric Assay Kit II SOD活力檢測試劑盒 II(比色法)Hot

      50105ES60

      100 T

      Total Nitric Oxide Assay Kit (Colorimetric)總一氧化氮(NO)檢測試劑盒(比色法)

      50107ES50

      50 T

      50107ES70

      200 T

      Fluorimetric Pyrophosphate Assay Kit焦磷酸(PPi)熒光檢測試劑盒

      50115ES70

      200 T

       

      HB240408

       

      400-6111-883