成人欧美一区二区三区,天天干天天操天天爱,免费特黄一级欧美大片在线看 ,亚洲中文字幕无码一区日日添

    <span id="alen4"></span>

    <li id="alen4"></li>

      IF46.297!四川大學(xué)邵振華團(tuán)隊(duì)揭示C5a-C5aR1相互作用

      補(bǔ)體系統(tǒng)是對(duì)感染性病原體的先天免疫反應(yīng)的重要組成部分。外來物質(zhì)的補(bǔ)體激活導(dǎo)致促炎因子的產(chǎn)生,其可以與先天性和適應(yīng)性免疫系統(tǒng)相互作用。補(bǔ)體片段C5a是其重要的效應(yīng)成分之一,通過激活C5a受體1(C5aR1)和相關(guān)下游G蛋白和β阻滯素信號(hào)通路發(fā)揮多種生理功能。2023年2月17日,四川大學(xué)邵振華團(tuán)隊(duì)《Cell Research》期刊發(fā)表了題為“Mechanism of activation and biased signaling in complement receptor C5aR1”的研究論文(IF=46.297)。該研究揭示了C5a-C5aR1相互作用,為C5aR1的配體識(shí)別、偏置信號(hào)調(diào)節(jié)、激活和C5aR1的Gi蛋白偶聯(lián)提供了深入的機(jī)制研究,這可能有助于未來治療藥物的設(shè)計(jì)。

      研究團(tuán)隊(duì)選擇了翌圣生物的轉(zhuǎn)染試劑PEI40000(40816ES)用于相關(guān)研究:

      目前轉(zhuǎn)染試劑系列的產(chǎn)品已經(jīng)榮登《Nature》《Cell》《Science》等多個(gè)頂級(jí)期刊,獲得科研大牛們認(rèn)可!

      翌圣轉(zhuǎn)染試劑榮登《Nature Biotechnology》

      翌圣明星CP--轉(zhuǎn)染試劑與PCR產(chǎn)品又登《Cell》期刊
      翌圣明星CP——轉(zhuǎn)染試劑與反轉(zhuǎn)定量產(chǎn)品登Science

       

      研究團(tuán)隊(duì)亦選擇了翌圣生物的D-熒光素鉀鹽(40902ES01)和Coelenterazine h 腔腸素h(40906ES02)用于相關(guān)研究:

       

      以下僅展示轉(zhuǎn)染試劑部分論文:

      向上滑動(dòng)查看更多

      [1] Chai Q, Yu S, Zhong Y, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science. 2022;378(6616):eabq0132.(IF:63.714)中國科學(xué)院微生物研究所劉翠華團(tuán)隊(duì)與北京師范大學(xué)邱小波團(tuán)隊(duì)

      [2] Liu R, Yang J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol. 2022 Jan 3. (IF:55)華東理工大學(xué)生物工程學(xué)院楊弋團(tuán)隊(duì)

      [3] Luo J, Yang Q, Zhang X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022;185(6)(IF:41.582)西湖大學(xué)生命科學(xué)學(xué)院陶亮團(tuán)隊(duì)

      [4] Xie F, Su P, et al. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv Mater. 2021 Oct 19. (IF:30.849)蘇州大學(xué)生物醫(yī)學(xué)研究院周芳芳團(tuán)隊(duì)

      [5] Zhou J, Chen P, et al. Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition. Mol Ther. 2022 Jan 5.(IF:11.454)武漢大學(xué)生命科學(xué)學(xué)院殷雷團(tuán)隊(duì)

      [6] Chen S, Cao X, et al. circVAMP3 Drives CAPRIN1 Phase Separation and Inhibits Hepatocellular Carcinoma by Suppressing c-Myc Translation. Adv Sci (Weinh). 2022 Jan 24.(IF:16.808)中國科學(xué)院北京生命科學(xué)研究院趙方慶團(tuán)隊(duì)

      [7] Gu C, Wang Y, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. J Exp Clin Cancer Res. 2022 Jan 6.(11.161)南京中醫(yī)藥大學(xué)楊燁顧春艷團(tuán)隊(duì)

      [8] Zhang Y, Yu X, et al. Splicing factor arginine/serine-rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosome-based cellular communication. Clin Transl Med. 2022 Feb.(11.492)南京中醫(yī)藥大學(xué)楊燁顧春艷團(tuán)隊(duì)

      [9] Qin J, Cai Y, et al. Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun. 2022 Jan 13.(14.9)四川大學(xué)生物治療國家重點(diǎn)實(shí)驗(yàn)室邵振華團(tuán)隊(duì)

      [10] Tang X, Deng Z, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022 Mar 8.(11.161)南京中醫(yī)藥大學(xué)楊燁顧春艷團(tuán)隊(duì)和浙江大學(xué)生命科學(xué)研究院張龍團(tuán)隊(duì)

      [11] Liang Y, Lu Q, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021 Sep 7.(IF:16.9)復(fù)旦大學(xué)生物醫(yī)學(xué)研究院于文強(qiáng)團(tuán)隊(duì)

      [12] Fan Y, Wang J, et al. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. 2021 Feb 2.(IF:27.403)南京醫(yī)科大學(xué)附屬逸夫醫(yī)院蘇東明團(tuán)隊(duì)

      [13] Dai L, Dai Y, et al. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol Cell. 2021 Jul 1.(IF:17.97)浙江大學(xué)生命科學(xué)研究院黃俊團(tuán)隊(duì)和中科院生物物理所周政團(tuán)隊(duì)

      [14] Zhang K, Wang A, et al. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron. 2021 Jun 16.(IF:17.17)中國科學(xué)院生物與化學(xué)交叉研究中心王文元團(tuán)隊(duì)

      [15] Li T, Chen X, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021 Jan 27.(IF:14.92)華東理工大學(xué)生物工程學(xué)院楊弋團(tuán)隊(duì)

      [16] Pan Y, He X, et al. Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD. Cell Rep. 2021 Jul 20.(IF:9.420)浙江大學(xué)腦科學(xué)與腦醫(yī)學(xué)學(xué)院馬歡團(tuán)隊(duì)

      [17] Liu H, Xing R, et al. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021 Jun 12.(IF:8.463)廈門大學(xué)生命科學(xué)學(xué)院陳穎團(tuán)隊(duì)

      [18] Yan F, Huang C, et al. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. Mol Cell. 2020 May 21.(IF:17.97)浙江大學(xué)生命科學(xué)研究院朱永群團(tuán)隊(duì)

      [19] Luo Q, Wu X, et al. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep. 2020 Jan 7.(IF:9.42)中國醫(yī)學(xué)科學(xué)院分子腫瘤學(xué)國家重點(diǎn)實(shí)驗(yàn)室劉芝華團(tuán)隊(duì)

      [20] Sun X, Peng X, et al. ADNP promotes neural differentiation by modulating Wnt/β-catenin signaling. Nat Commun. 2020 Jun 12.(IF:14.911)中國科學(xué)院水生生物研究所孫玉華團(tuán)隊(duì)

      [21] Yang X, Wang H, et al. Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation. Protein Cell. 2020 Dec.(IF:14.872)浙江大學(xué)醫(yī)學(xué)院/轉(zhuǎn)化醫(yī)學(xué)研究院閔軍霞團(tuán)隊(duì)

      [22] Zou Y, Wang A, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc. 2018 Oct.(IF:13.490)華東理工大學(xué)生物工程學(xué)院楊弋、趙玉政團(tuán)隊(duì)

      [23] Zhang K, Zhao X, et al. Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Appl Mater Interfaces. 2018 Sep 12.(IF:8.09)南開大學(xué)醫(yī)學(xué)院李宗金團(tuán)隊(duì)

      [24] Hao H, Hu S, et al. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery. Circulation. 2017 Mar 28.(IF:29.69)中國醫(yī)學(xué)科學(xué)院/北京協(xié)和醫(yī)學(xué)院阜外醫(yī)院王淼團(tuán)隊(duì)

       

       

       

      以下展示D-熒光素鉀鹽(貨號(hào):40902)部分論文:

       

      向上滑動(dòng)查看更多

      [1] Gu Y, Wang Y, He L, et al. Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 2021;20(1):132. Published 2021 Oct 14. doi:10.1186/s12943-021-01435-2(IF:27.401)

      [2] Yuan Y, Jia G, Wu C, et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263-1274. doi:10.1038/s41422-021-00566-x(IF:25.617)

      [3] Huang K, Liang Q, Zhou Y, et al. A Novel Allosteric Inhibitor of Phosphoglycerate Mutase 1 Suppresses Growth and Metastasis of Non-Small-Cell Lung Cancer [published correction appears in Cell Metab. 2021 Jan 5;33(1):223]. Cell Metab. 2019;30(6):1107-1119.e8. doi:10.1016/j.cmet.2019.09.014(IF:22.415)

      [4] Wan S, Liu S, Sun M, et al. Spatial- and Valence-Matched Neutralizing DNA Nanostructure Blocks Wild-Type SARS-CoV-2 and Omicron Variant Infection. ACS Nano. 2022;16(9):15310-15317. doi:10.1021/acsnano.2c06803(IF:18.027)

      [5] Yang B, Kong J, Fang X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat Commun. 2022;13(1):3999. Published 2022 Jul 9. doi:10.1038/s41467-022-31740-3(IF:17.694)

      [6] Bian S, Dong H, Zhao L, et al. Antihypertension Nanoblockers Increase Intratumoral Perfusion of Sequential Cytotoxic Nanoparticles to Enhance Chemotherapy Efficacy against Pancreatic Cancer [published online ahead of print, 2022 Aug 26]. Adv Sci (Weinh). 2022;e2201931. doi:10.1002/advs.202201931(IF:17.521)

      [7] Jiang H, Bian W, Sui Y, et al. FBXO42 facilitates Notch signaling activation and global chromatin relaxation by promoting K63-linked polyubiquitination of RBPJ. Sci Adv. 2022;8(38):eabq4831. doi:10.1126/sciadv.abq4831(IF:14.957)

      [8] Dong X, Cheng R, Zhu S, et al. A Heterojunction Structured WO2.9-WSe2 Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose. ACS Nano. 2020;14(5):5400-5416. doi:10.1021/acsnano.9b08962(IF:14.588)

      [9] Gu J, Sun Y, Song J, et al. Irradiation induces DJ-1 secretion from esophageal squamous cell carcinoma cells to accelerate metastasis of bystander cells via a TGF-β1 positive feedback loop. J Exp Clin Cancer Res. 2022;41(1):259. Published 2022 Aug 26. doi:10.1186/s13046-022-02471-6(IF:12.658)

      [10] Zheng DW, Gao F, Cheng Q, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11(1):1985. Published 2020 Apr 24. doi:10.1038/s41467-020-15927-0(IF:12.121)

      [11] Hu J, Su H, Cao H, et al. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell. 2022;34(7):2688-2707. doi:10.1093/plcell/koac107(IF:11.277)

      [12] Qi P, Huang M, Hu X, et al. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell. 2022;34(5):1666-1683. doi:10.1093/plcell/koac015(IF:11.277)

      [13] Huang X, Qiu M, Wang T, et al. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy. J Nanobiotechnology. 2022;20(1):93. Published 2022 Feb 22. doi:10.1186/s12951-022-01300-4(IF:10.435)

      [14] Tang Y, Lin S, Yin S, et al. In situ gas foaming based on magnesium particle degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials. 2020;232:119727. doi:10.1016/j.biomaterials.2019.119727(IF:10.273)

      [15] Zhang X, Zheng S, Hu C, et al. Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair. Oncogene. 2022;41(16):2372-2389.

       

       

       

      以下展示Coelenterazine h 腔腸素h(貨號(hào):40906)部分論文:

       

      向上滑動(dòng)查看更多

      [1] Lin S, Han S, Cai X, et al. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature. 2021;594(7864):583-588. doi:10.1038/s41586-021-03495-2(IF:49.962)

      [2] Ma S, Chen Y, Dai A, et al. Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. Cell Res. 2021;31(10):1061-1071. doi:10.1038/s41422-021-00557-y(IF:25.617)

      [3] Zhang H, Chen LN, Yang D, et al. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Res. 2021;31(11):1163-1175. doi:10.1038/s41422-021-00552-3(IF:25.617)

      [4] Zhai X, Mao C, Shen Q, et al. Molecular insights into the distinct signaling duration for the peptide-induced PTH1R activation. Nat Commun. 2022;13(1):6276. Published 2022 Oct 21. doi:10.1038/s41467-022-34009-x(IF:17.694)

      [5] Shao Z, Shen Q, Yao B, et al. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol. 2022;18(3):264-271. doi:10.1038/s41589-021-00918-z(IF:15.040)

      [6] Liu Q, Yang D, Zhuang Y, et al. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nat Chem Biol. 2021;17(12):1238-1244. doi:10.1038/s41589-021-00841-3(IF:15.040)

      [7] Zhao F, Zhou Q, Cong Z, et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun. 2022;13(1):1057. Published 2022 Feb 25. doi:10.1038/s41467-022-28683-0(IF:14.919)

      [8] Zhou F, Zhang H, Cong Z, et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun. 2020;11(1):5205. Published 2020 Oct 15. doi:10.1038/s41467-020-18945-0(IF:12.121)

      [9] Shao L, Chen Y, Zhang S, et al. Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharm Sin B. 2022;12(2):637-650. doi:10.1016/j.apsb.2021.07.028(IF:11.614)

      [10] Shao Z, Tan Y, Shen Q, et al. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov. 2022;8(1):44. Published 2022 May 15. doi:10.1038/s41421-022-00403-4(IF:10.849)

      [11] Su L, Sun Z, Qi F, et al. GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer. J Nanobiotechnology. 2022;20(1):340. Published 2022 Jul 20. doi:10.1186/s12951-022-01530-6(IF:9.429)

      [12] Zhao F, Zhang C, Zhou Q, et al. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. Elife. 2021;10:e68719. Published 2021 Jul 13. doi:10.7554/eLife.68719(IF:8.146)

      [13] Wang YZ, Yang DH, Wang MW. Signaling profiles in HEK 293T cells co-expressing GLP-1 and GIP receptors. Acta Pharmacol Sin. 2022;43(6):1453-1460. doi:10.1038/s41401-021-00758-6(IF:6.150)

      [14] Wang J, Yang D, Cheng X, et al. Allosteric Modulators Enhancing GLP-1 Binding to GLP-1R via a Transmembrane Site. ACS Chem Biol. 2021;16(11):2444-2452. doi:10.1021/acschembio.1c00552(IF:5.100)

      [15] Lin GY, Lin L, Cai XQ, et al. High-throughput screening campaign identifies a small molecule agonist of the relaxin family peptide receptor 4. Acta Pharmacol Sin. 2020;41(10):1328-1336. doi:10.1038/s41401-020-0390-x(IF:5.064)

      [16] Yuliantie E, Darbalaei S, Dai A, et al. Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol. 2020;177:114001. doi:10.1016/j.bcp.2020.114001(IF:4.960)

      [17] Darbalaei S, Yuliantie E, Dai A, et al. Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochem Pharmacol. 2020;180:114150. doi:10.1016/j.bcp.2020.114150(IF:4.960)

      [18] Sun L, Hao Y, Wang Z, Zeng Y. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines. Viruses. 2018;10(4):145. Published 2018 Mar 23. doi:10.3390/v10040145(IF:3.761)

       

       

       

       

      翌圣生物還提供試用裝申請(qǐng),請(qǐng)掃描下方二維碼進(jìn)入翌圣商城申請(qǐng)測(cè)試裝:

       

      Hieff Trans®脂質(zhì)體核酸轉(zhuǎn)染試劑[40802ES01]

       

       

       

      Hieff Trans® Universal Transfection Reagent HieffTrans®用型轉(zhuǎn)染試劑[40808ES01]

       

       

       

      Polyethylenimine Linear(PEI) MW40000(rapid lysis)線性PEI轉(zhuǎn)染試劑(速溶型)[40816ES01]

       

       

       

       

      翌圣生物轉(zhuǎn)染試劑產(chǎn)品目錄
       

       

      應(yīng)用場(chǎng)景

      名稱

      貨號(hào)

      細(xì)胞類型:貼壁/懸浮
      核酸類型:DNA、siRNA

      Hieff Trans® 脂質(zhì)體核酸轉(zhuǎn)染試劑

      40802ES

      細(xì)胞類型:貼壁/懸浮核酸類型:DNA

      磷酸鈣法細(xì)胞轉(zhuǎn)染試劑

      40803ES

      用途:病毒感染、DNA轉(zhuǎn)染

      聚凝胺(10 mg/ml)

      40804ES

      細(xì)胞類型:懸浮核酸類型:DNA、siRNA

      Hieff Trans® 懸浮細(xì)胞專用脂質(zhì)體核酸轉(zhuǎn)染試劑

      40805ES

      細(xì)胞類型:貼壁/懸浮核酸類型:siRNAmiRNA

      Hieff Trans® siRNA/miRNA體外轉(zhuǎn)染試劑

      40806ES

      細(xì)胞類型:貼壁/懸浮核酸類型:DNA、siRNAmiRNA

      Hieff Trans® 通用型轉(zhuǎn)染試劑

      40808ES

      細(xì)胞類型:貼壁/懸浮核酸類型:mRNA

      Hieff Trans® mRNA轉(zhuǎn)染試劑

      40809ES

      細(xì)胞類型:貼壁/懸浮核酸類型:DNA

      PEI轉(zhuǎn)染試劑MW25000

      40815ES

      細(xì)胞類型:貼壁/懸浮核酸類型:DNA

      線性PEI轉(zhuǎn)染試劑(速溶型)MW40000

      40816ES

      細(xì)胞類型:293核酸類型:DNA

      Hieff Trans® 293細(xì)胞轉(zhuǎn)染試劑

      40817ES

      細(xì)胞類型:293核酸類型:DNA用途:AAV/LV載體研發(fā)與工藝開發(fā)

      Hieff Trans® PEI轉(zhuǎn)染試劑

      40820ES

      細(xì)胞類型:293
      核酸類型:DNA
      用途:AAV/LV載體大規(guī)模生產(chǎn)

      Hieff Trans® PEI Transfection Reagent-GMP

      40821ES

      點(diǎn)擊產(chǎn)品名稱查看詳情

       

       

      翌圣生物活體成像產(chǎn)品目錄
       

       

      應(yīng)用場(chǎng)景

      產(chǎn)品名稱

      貨號(hào)

      活體成像(較易溶于水)

      D-Luciferin, Sodium Salt D 熒光素鈉鹽

      40901ES01/02/03/08

      活體成像應(yīng)用最普遍(易溶于水)

      D-Luciferin, Potassium Salt D 熒光素鉀鹽

      40902ES01/02/03/08

      活體成像(不易溶于水)

      D-Luciferin Firefly, Free Acid D 螢火蟲熒光素,游離酸

      40903ES01/02/03

      海腎熒光素酶底物,Gaussia熒光素酶底物

      Coelenterazine Native 天然腔腸素

      40904ES02/03/08

      BRET研究首選的腔腸素類底物

      Coelenterazine 400a 腔腸素400a

      40905ES02/03

      體外生物發(fā)光,鈣離子濃度檢測(cè)(細(xì)胞水平驗(yàn)證)

      Coelenterazine h 腔腸素h

      40906ES02/03/08

      體內(nèi)生物發(fā)光,鈣離子濃度檢測(cè)(動(dòng)物體內(nèi)活體成像)

      Ready To Use Coelenterazine h 即用型腔腸素h

      40907ES10

      高靈敏度鈣離子檢測(cè)

      Coelenterazine f 腔腸素f

      40908ES02/03

      點(diǎn)擊產(chǎn)品名稱查看詳情

       

      400-6111-883